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Abstract. Atmospheric conditions have a clear influence on wake effects. Stability classification is usually based on wind 

speed, turbulence intensity, shear and temperature gradients measured partly at met masts, buoys or LiDARs. The objective 

of this paper is to find a classification for stability based on wind turbine Supervisory Control and Data Acquisition 10 

(SCADA) measurements in order to fit engineering wake models better to the current ambient conditions. Two offshore 

wind farms with met masts have been used to establish a correlation between met mast stability classification and new 

aggregated artificial signals. The significance of these new signals on power production is demonstrated for two wind farms 

with met masts and measurements from a long range LiDAR and validated against data from one further wind farm without 

a met mast. We found a good correlation between the standard deviation of active power divided by the average power of 15 

wind turbines in free flow with the ambient turbulence intensity when the wind turbines were operating in partial load. The 

proposed signal is very sensitive to increased turbulence due to neighbouring turbines and wind farms even at a distance of 

more than 38 rotor diameters away. It allows to distinguish between conditions with different magnitude of wake effects. 

1 Introduction 

Wake effects are one of the largest sources of losses in offshore energy yield assessment. This makes wake modelling very 20 

important and much research is ongoing to improve wake model predictions. In the latest offshore CREYAP  benchmark 

exercise (Comparative Resource and Energy Yield Assessment Procedure) wake modelling was found to be the prediction 

with the highest variation among the participants (Mortensen et al., 2015). 

In order to be able to use a wake model for validating the performance of an operating offshore wind farm (Mittelmeier et 

al., 2016) prediction uncertainties need to be reduced. Atmospheric stability has been identified as being one main driver for 25 

the variation in power production under waked conditions (Dörenkämper et al., 2012, Westerhellweg et al., 2014, Iungo and 

Porté-Agel, 2014) and state of the art engineering wake models for industrial application like Fuga or FarmFlow are able to 

take stability effects into account (Özdemir et al., 2013, Ott and Nielsen, 2014). 

Stability classification is based on measurements from met masts, buoys or is assisted by remote sensing devices such as 

LiDAR or SoDAR. For offshore use, these devices are very expensive and therefore often not permanently available. In 30 
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several studies, LIDAR’s have been used to assess the wind speed recovery behind the turbine and wake models have been 

tuned to match the measured wind speed (Beck et al., 2014, More and Gallacher, 2014).  

  

The purpose of this paper is to investigate wind farm operational data and establish methods of identifying correlations 

between SCADA statistics and wind turbine wake behaviour caused by different atmospheric conditions. 5 

2 Wind farms and measurements 

For this investigation, we select three offshore wind farms, i.e. alpha ventus, Nordsee Ost and Ormonde. The first two wind 

farms have a well-equipped met mast and provide high quality measurements of hub height wind speed, wind direction, 

shear and turbulence intensity. 

2.1 alpha ventus 10 

The wind farm alpha ventus (AV) is located about 45 km north of the island of Borkum in the North Sea. It consists of 

twelve turbines of the 5 MW class with a rotordiameter of 126 m and has been commissioned in April 2010. The six 

northern turbines have been manufactured by Senvion. The six turbines in the southern part of the wind farm (produced by 

Adwen) are not considered in our analysis. The FINO1 research met mast is only 3.2 rotor diameters west of turbine AV4. 

The layout of alpha ventus (Fig. 1) allows for investigating the wake behaviour in single and double wake conditions for 15 

westerly wind directions. No data after the period from 3/2011 to 1/2015 is used, because the installation of the Trianel wind 

farm in the west is supposed to have changed the environmental conditions of alpha ventus by adding extra turbulence to the 

inflow. 

 
Figure 1: Northern part of alpha ventus and FINO1 met mast layout with free flow sector 20 

 

N 
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2.2 Nordsee Ost 

The wind farm Nordsee Ost (NO) is located about 35 km north-west of the island of Helgoland in the North. The 48 Senvion 

turbines have a rated power of 6 MW each and a rotor diameter of 126 m. The met mast is located in the south-western 

corner of the wind farm (Fig. 2). In the south, the neighbouring wind farm Meerwind Ost/Süd reduces the sector of free flow 

for the met mast as well as the possibilities to study multiple wakes higher than triple wake condition without disturbing 5 

effects from Meerwind. 

The wind farm Nordsee Ost has been fully commissioned in 2015. So far not enough data (11/2015 – 11/2016) has been 

collected to investigate the full wake behaviour based on SCADA data. For this reason, a correlation analysis (described in 

Section 3.2) is performed and the data from the ClusterDesign long range LiDAR measurement campaign is analysed. 

 10 
 

Figure 2: Nordsee Ost (blue cycles) with neighbouring wind farm Meerwind Süd (green triangles) and met mast (red square). 
Orange area indicates the PPI scan from the Windcube 200S, mounted on the helicopter platform of NO48. 

 

2.3 Ormonde 15 

The Ormonde wind farm consists of 30 Senvion turbines with a rated power of 5 MW and a rotor diameter of 126 m. The 

wind farm is located in the Irish Sea 10 km west of the Isle of Walney. The selected data is from 1/2012 – 1/2014. During 

this period, neighbouring wind farms were operational. In the south west, there is Walney 1 (SWT-3.6-107 Siemens) and 

Walney 2 (SWT-3.6-120 Siemens), in the south there is West of Duddon Sands (SWT-3.6-120 Siemens, fully commissioned 

30.10.2014) and in the south east there is Barrow (V90 3.0MW Vestas). 20 

The farm layout displayed in Fig. 3 is structured in a regular array which allows for comparing several multiple-wake 

situations. The inner farm turbine distance for the investigated wake situation from south west is 6.3 D and from north west 

is 4.3 D. 

N 
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Figure 3: Ormonde wind farm and its neighbours. Two wind directions are selected for the analysis of wake effects at different 
turbulent classes.  

 

2.4 SCADA and meteorological data 5 

The SCADA data from all wind farms and the meteorological data consist of 10-min statistics. Each turbine provides wind 

speed, wind direction, active power, yaw position, and pitch angle. The operational condition of the wind turbine which is 

used for the correlation with the met mast turbulence intensity is categorized by the minimum active power > 10kW, the 

maximum pitch angle < 3 ° and the standard deviation of the yaw position < 5 °. These filter criteria’s ensure that no stand 

stills, curtailments or too large yaw activities are included in the data. Implausible met mast data is removed and wind 10 

directions is corrected for bias by using the orientation of the maximum wake deficit. For the correlation, only sectors of free 

flow conditions is used. 

2.5 Long range LiDAR measurements 

Within the “ClusterDesign” research project, funded by the European Union, a long-range LiDAR measurement campaign 

was realized. A Windcube 200S (WLS200S) LiDAR with scan head was placed on the helicopter platform of NO48 (Fig. 2) 15 

from 11/2015 – 5/2016. A differential GPS system composed by three antenna GNSS-System of type Trimble SPS855 / 

SPS555H allowes for additional measurements of turbines`s yaw and nacelle`s pitch and roll angle. One LiDAR 

measurement cycle takes about 200 s. It includs five plan position indicator (PPI) scans followed by one range height 

indicator (RHI) scan. Both scans cover a sector of 30 ° on the horizontal and vertical plane respectively and are centred on 

the rotor axis. The scan trajectories have an angular resolution of 1 ° and measured the wind speed component along the 20 

measuring direction every 25 m from 100 m to 2500 m. The LiDAR data is filtered excluding measurements with a poor 

signal intensity, or affected by hard targets, or considered outliers.  

38 D 
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Figure 4: Upper-plot: Visualization of the horizontal plan position indicator (PPI) scans downstream of NO48. Wind speed is 

normalized with the inflow wind speed, measured at the met mast. The black crosses are the locations of the wind speed minima’s 
derived from a Gaussian fitting for each measurement distance. Bottom-plot: Normalized wind speed as function of the distance in 5 

rotor diameters, extracted from the top-plot for the Gaussian fitted minima’s (black crosses).  
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The horizontal 10-min average wind speed is calculated on a well-defined grid under the assumption of a negligible vertical 

component of the wind. The average of the wind component measured by the LiDAR during the considered time interval is 

included in the region of interest of the addressed grid point. The average 10-min wind direction is provided by the met mast. 

When the latter measurement is not available, the turbine yaw provided by the differential GPS system is used to estimate 5 

the wind direction. A detailed description of the LiDAR data pre-processing can be found in Schneemann et al. (2016). 

 

For the assessment in this paper we are using averages of 10-min periods of horizontal wind speed data evaluated from PPI 

scans of the wake behind NO48. A multiple wake situation can be observed at a wind direction of 236.5 °, when NO45 is in 

the wake of NO44 and NO48. In Fig. 4 (top) an example for a PPI scan at hub height with averages of 10-min periods of the 10 

horizontal wind speed data is displayed. The distance from turbine NO48 is normalised by its rotor diameter and the wind 

speeds are normalized with the corresponding wind speed measured at the met mast. The different colours represent the wind 

speed relative to the wind speed at the given met mast location. The black crosses display the locations of the estimated wind 

speed minima for each measured distance equal or greater than 2 D. These minima are supposed to represent the centre of 

the wake. They are derived at each downstream cross-section with a Gaussian smoothing (Hamilton, 2015) applied to the 15 

LiDAR data before fitting a double-Gaussian-type velocity deficit at the near wake (2 D - 5 D) and a single-Gaussian-type in 

the far wake. This distinction prevents an overestimation of the deficit in the near wake where the nacelle still has an 

influence on the flow shape (Keane et al., 2016). The Gaussian minima (black crosses) do not follow a straight line for the 

entire scan. This should not be interpreted as meandering as we are looking at averages of 10- min periods. 

The lower graph of Fig. 4 shows the resulting, normalized wind speeds over the normalized distance from NO48. The black 20 

line with the corresponding black crosses refers to the fitted values of the Gaussian fits.  

3 Data analysis  

3.1. Turbulence, stability and its impact on power production 

A stability classification according to the Richardson number expects wind speed and temperature measurements in 10 m 

and 30 m height. As both met masts fail to fulfil this requirement and as the available temperature measurements have a too 25 

large uncertainty to provide reliable stability estimates via the bulk Richardson approach (Saint-Drenan et al., 2009), the 

simplified classification using turbulence intensity at hub height as proposed by Dörenkämper et al. (2012, 2015) is used for 

this investigation. 

SCADA and LiDAR data is divided into three subsets based on the turbulence intensity from the met mast. Dörenkämper 

(2015) has suggested a classification into unstable, neutral and stable classes (Table 1). The power production for the 30 

different subsets, normalised by free flow power production, is compared for single wake and double wake conditions with 

data from alpha ventus and FINO1. This kind of analysis reveals the impact only at turbine positions but the wind speed 
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behaviour in-between turbines is not covered. Therefore at Nordsee Ost, wind speed recovery in single, double and triple 

wake situations measured by the LiDAR is analysed.  

To determine the influence of turbulence and stability on wake effects all available PPIs are analysed and the results of the 

Gaussian fitted minima’s are divided into the same subsets as described in Table 1 based on the turbulence intensity 

measured at hub height with the met mast. 5 

Table 1: Definition of stratification by met mast turbulence intensity at hub height at alpha ventus and Nordsee Ost 

Classification Turbulence Intensity (TI) 
Unstable TI > 6 % 
Neutral 6 % ≥ TI ≥ 4 % 
Stable 4 % > TI 

3.2 Correlation analysis 

At wind farms with no met mast we have to rely on other signals to describe the differences in power production under 

different atmospheric conditions. To find the best substitute for a met mast measured turbulence intensity several SCADA 

signals that are affected by turbulence are correlated to the met mast turbulence intensity  which is defined as 10 

𝑇𝐼𝑚𝑚𝑚𝑚 =  
𝜎𝑢𝑚𝑚𝑚𝑚
𝑢𝑚𝑚𝑚𝑚���������

 .           (1) 

Analogous to Eq. 1 we define  

𝑇𝐼𝑊𝑊 =  
𝜎𝑢𝑊𝑊
𝑢𝑊𝑊�������

            (2) 

as the turbulence intensity measured with the wind speed anemometer on top of the nacelle with 𝑢�  being averages of 10-min 

periods of horizontal wind speed and its standard deviation 𝜎𝑢 . Göçmen and Giebel (2016) evaluated 1Hz data from 15 

Lillgrund and Horns Rev I and found good turbulence estimators by using a turbine derived “WindEstimate” from look-up 

tables. When only 10-min statistics are available the signals of interest are the standard deviation of the turbine power 

𝑃𝑂𝑠𝑠𝑠 =  𝜎𝑃,            (3) 

and the normalisation of this signal with the average power 𝑃� . This leads to  

𝑃𝑂𝑇𝑇 =  𝜎𝑃
𝑃�

.            (4) 20 

All SCADA signals can be obtained under free flow conditions or in waked conditions. 

3.3 New classification and validation 

The new artificial SCADA signal with the highest correlation to the met mast turbulence intensity is used to classify 

different stratifications. The thresholds are estimated with a two-step approach. First, the power of a turbine in the wake is 

normalized with the power of a turbine in free flow conditions. This normalized power from a narrow sector of 10° centred 25 

at the full wake is divided into three groups. Medium wake effects are ±5 % around the median of the normalized power. 

High wake effects are 5 % below and low wake effects are 5 % above the median of the normalized power. In the second 
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step the density distribution of the new SCADA signal is plotted for all three groups and the thresholds are selected to 

achieve best distinction between the three data sets. 

The quality of the established relationship in terms of dependency on turbine type, layout and location of the wind farm is 

tested by applying the same classification on a different wind farm where no met mast is available.  

4 Results and Discussion 5 

4.1Turbulence stability and its impact on power production 

Alpha ventus data from almost four years of operation is used to evaluate the influence of atmospheric stability estimated 

from the turbulence intensity and its influence on the wake development. Figure 5 proves the different wake behaviour under 

different turbulence conditions. The top row of plots shows the single wake condition of turbine AV5 in the wake of AV4. 

The second row displays the same evaluation but for the double wake condition of AV6 in the wake of AV4 and AV5. The 10 

left side is a normalised power deficit as function of the wind direction for a wind speed range from 7 m/s to 9 m/s. On the 

right side, there is the normalised power as function of the wind speed for a sector width of 10 °. Each graph states the total 

number 𝑁 of data points which have been split into stable (blue dots), neutral (green diamonds) and unstable (red triangles) 

data sets. Each symbol is the average of a 2 ° bin (2 m/s bin) and the error bars indicate the standard error of the mean. 

For the single wake, a clear distinguishable difference between the stable and unstable power deficit is visible. The largest 15 

deviation is found in the full wake. The second wake has a less pronounced difference in power which can be explained by 

the fact, that the first turbine operating in the wake supports the mixing with the ambient wind speed. Another interesting 

effect is noticeable in the top left plot. The difference in power for the different stabilities is higher at the right hand side of 

the deficit in downstream direction. This right drift of the wake in stable conditions has also been observed in LES 

simulations by Vollmer et al.(2016). 20 

The turbulence intensity for this classification has been measured at 100 m which is the largest height at the FINO1 met 

mast. The second height of the FINO1 met mast (90 m) is closer to hub height (92 m), but the strong mast structure and the 

boom orientation of 135 ° causes disturbance for wind directions within the selected sector for our investigation. No further 

correction, e.g. to account for the difference in height was necessary according to the findings of Tuerk (2008). 

 25 

For the wind farm Nordsee Ost (NO) only one full year of SCADA data and six month of LiDAR data is available for this 

investigation. Fifteen PPI scans (as described in Section 2.5) at wind direction from 236 ° - 242 ° are available and 

categorized according to the classification in Table 1. Fig. 6 displays the wind speed measured with the LiDAR normalized 

with the inflow wind speed measured at the met mast. The wind speed recovers faster for the unstable turbulence class than 

for the neutral and stable class. The second and third turbine in the row for the investigated wind direction are marked with 30 

blue vertical lines. The decreased wind speed in the induction zone in front of each downstream turbine is clearly visible. 

The error bars indicate the standard error of the mean. For the stable class 𝑇𝑇 ≤ 4% only one set of PPI scans is available. 
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Figure 5: Wake effects in alpha ventus (AV) under different atmospheric conditions classified by met mast turbulence intensity. 
Power of downstream turbine normalised with free flow turbine. Upper row: single wake, bottom row: double wake. Left column: 
Normalised Power as function of wind direction, right column: Normalised power as function of wind speed.  
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Figure 6: Wind speed recovery at wake centre on hub height behind NO48 for different turbulence stability classes. The wind 
speed is normalized with the inflow wind speed and the distance from the LiDAR on NO48 downstream is displayed in multiples of 
rotor diameters 

4.2 Correlation analysis 5 

In the next step, we correlate the SCADA signals described in Section 3.2 with the turbulence intensity measured at the mast. 

In Fig. 7 a panel plot is displayed. The graphs on the diagonal present the histogram and density distribution for the 

respective variable. The panels above the diagonal provide the Pearson correlation coefficients. The lower panels are scatter 

plots for the two variables with a fitted linear regression line. The colours of the points indicate the three stability 

classifications (blue: stable, green: neutral, red: unstable) determined with the met mast turbulence intensity. 10 

The correlation between met mast and turbine TI in subplot (1 , 2) equals to 0.55. This poor result can be explained by the 

nacelle wind speed measurement position behind the rotor, which induces additional disturbance to the flow.  

The highest correlation with the met mast TI is obtained with the standard deviation of the turbine power divided by its 

average active power (𝑃𝑂𝑇𝑇,𝐴𝐴4) in subplot (1 , 5). Although a correlation of 0.66 is not perfect, it is still better than the 

turbulence measured with the nacelle cup anemometer. Especially in the low turbulence region, the scatter plot proves to be 15 

denser. Very similar results are obtained when applying the same analysis to AV1 and AV2. 

 

 
 
 20 
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𝑇𝐼100           

 5 

 

𝑇𝐼𝐴𝐴4         

 

 

𝑃𝑃𝑠𝑠𝑠,𝐴𝐴4  

 10 

 

𝑃𝑂𝑠𝑠𝑠,𝐴𝐴5 

 

 

𝑃𝑂𝑇𝑇,𝐴𝐴4 

 

 15 

𝑇𝐼100                𝑇𝐼𝐴𝐴4              𝑃𝑂𝑠𝑠𝑠,𝐴𝐴4           𝑃𝑂𝑠𝑠𝑠,𝐴𝑉5         𝑃𝑂𝑇𝑇,𝐴𝐴4 

 
Figure 7: Correlation matrix. Turbulence intensity from met mast (𝑻𝑰𝟏𝟏𝟏) is correlated with the TI measured with the nacelle 
anemometer of AV4 (𝑻𝑰𝑨𝑨𝟒), the standard deviation of the 10 min power of AV4 (𝑷𝑶𝒔𝒔𝒔,𝑨𝑨𝟒), the standard deviation of the 10min 
power of AV5 (𝑷𝑶𝒔𝒔𝒔,𝑨𝑨𝟓 ) and the standard deviation of the power divided by the average power of AV4 (𝑷𝑶𝑻𝑻,𝑨𝑨𝟒). All 
dimensions are in [%] except for the standard deviation of the power which is in [kW]. 20 

To check the validity of these results, we use data from Nordsee Ost (NO). Figure 8 provides the information corresponding 

to Fig. 7 but for a different turbine type, met mast and a different location in the North Sea.  

The correlation reveals the best result for the 𝑃𝑂𝑇𝑇,𝑁𝑁47signal (0.62). 𝑇𝐼𝑁𝑁47 derived from the nacelle cup anemometer gives 

0.60 . The difference between these two signals is much smaller than in alpha ventus. A different blade design and the 

distinct turbine nacelle met mast layout might be the reason for this.  25 
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Both correlation analyses show that the new artificial SCADA signal, derived from the standard deviation of the power 

divided by its average active power 𝑃𝑂𝑇𝑇 is the most suitable among the selected signals to substitute a met mast 𝑇𝐼𝑚𝑚𝑚𝑚  for 

our purpose. In the next section, we check the influence of this new signal on the estimated power production in the wake. 

 

 5 

 

 

𝑇𝐼𝑚𝑚𝑚𝑚           

 

 

𝑇𝐼𝑁𝑁47         

 10 

 

𝑃𝑃𝑠𝑠𝑠,𝑁𝑁47  

 

 

𝑃𝑂𝑠𝑠𝑠,𝑁𝑁48 

 15 

 

𝑃𝑂𝑇𝑇,𝑁𝑁47 

 

                                       𝑇𝐼𝑚𝑚𝑚𝑚              𝑇𝐼𝑁𝑂47           𝑃𝑂𝑠𝑠𝑠,𝑁𝑁47       𝑃𝑂𝑠𝑠𝑠,𝑁𝑁48     𝑃𝑂𝑇𝑇,𝑁𝑁47 

 
Figure 8: Correlation analysis for Nordsee Ost. Turbulence intensity (𝑻𝑰𝒎𝒎𝒎𝒎) measured at hub height is correlated with the TI 
measured with the nacelle anemometer of NO47 (𝑻𝑰𝑵𝑵𝑵𝑵), the rotor estimated wind speed (𝑻𝑰𝑵𝑵𝑵𝑵𝒖𝒆𝒆), the standard deviation of 20 
the 10 min power of NO47 (𝑷𝑶𝒔𝒔𝒔,𝑵𝑵𝑵𝑵), the standard deviation of the 10 min power of NO48 (𝑷𝑶𝒔𝒕𝒕,𝑵𝑵𝑵𝑵), the standard deviation 
of the power divided by the average power of NO47 (𝑷𝑶𝑻𝑻,𝑵𝑵𝑵𝑵). All dimensions are in [%]except for the standard deviation of the 
power which is in [kW]. 
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4.3 New classification and validation 

In Section 4.2 we demonstrated the correlation of the SCADA signal (𝑃𝑂𝑇𝑇) derived by the standard deviation of the power 

divided by its average power with the turbulence intensity measured at a met mast in free flow conditions. In the next step, 

the ability of this signal to distinguish between different environmental stratification is analysed. Table 2 to Table 5 show the 

proposed thresholds for the different classifications for each wind farm (also corresponding to different turbine types). 5 

4.3.1 alpha ventus (AV) 

The classification of wake effects by the 𝑃𝑂𝑇𝑇 signal is illustrated in Fig. 9 analogous to Fig. 5 where the turbulence intensity 

𝑇𝐼𝑚𝑚𝑚𝑚is used. 

 
Figure 9: Stability classification with the 𝑷𝑶𝑻𝑻 value. Power of waked turbine normalised with free flow turbine. Upper row: single 10 
wake, bottom row: double wake. Left column: Normalised Power as function of wind direction, right column: Normalised power 
as function of wind speed. 
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A clear difference in power production between stable and unstable cases can be identified in the single wake. The 

differences in double wake are again less pronounced. Compared to the TI classification, the curves for the neutral case are 

not as clear as in-between the stable and unstable curves and in the normalized power curve plots (right column) the stable 

conditions can only be highlighted up to the wind speed of rated power for the free flow turbine. This can be explained with 

the fact, that at rated power the pitch controller rather than the power variation is governing the turbine reaction on 5 

turbulence intensity. This leads in Eq. (4) to a significant decrease of the numerator and keeps the denominator constant.  

Table 2: Definition of stratification by power intensity: alpha ventus 

Classification Power Intensity (𝑃𝑂𝑇𝑇) 
Unstable 𝑃𝑂𝑇𝑇 > 13 % 
Neutral 13 % ≥ 𝑃𝑂𝑇𝑇 ≥ 7 % 
Stable 7 % > 𝑃𝑂𝑇𝐼 

4.3.2 Nordsee Ost (NO) 

The classification of wake effects in Fig. 10 is based on 𝑃𝑂𝑇𝑇 and analogous to Fig. 6 where turbulence intensity 𝑇𝐼𝑚𝑚𝑚𝑚  has 

been used. For these plots the Gaussian fitted minima’s of the normalized wind speed (wake centres) measured by the 10 

LiDAR are plotted for each distance behind NO48.  

 
Figure 10: Wind speed recovery behind NO48 for different 𝑷𝑶𝑻𝑻 classes. The wind speed is normalized with the inflow wind speed 
and the distance from the LiDAR on NO48 downstream is displayed in multiples of rotor diameters. 

Again, this result states stronger wake effects for stable cases compared to unstable situations. The single wake has a less 15 

pronounced difference between the three classes and the slope of the wind speed recovery is smaller than the double wake 

case. E.g. 5D behind the first turbine, the wind speed has recovered to approximately 70% of the free flow wind speed and in 
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the second wake 5D behind NO44 we see already more than 75%. This fact leads to the performance increase at the third 

turbine (NO45) compared to the second turbine (NO44). Wake added turbulence of NO48 is helping to recover the wind 

speed.  

Table 3: Definition of stratification by power intensity: Nordsee Ost 

Classification Power Intensity (𝑃𝑂𝑇𝑇) 
Unstable 𝑃𝑂𝑇𝑇 > 16 % 
Neutral 16 % ≥ 𝑃𝑂𝑇𝑇 ≥ 12 % 
Stable 12 % > 𝑃𝑂𝑇𝑇 

4.3.3 Ormonde (OR) 5 

Finally the transferability of classification boundaries to other wind farms where no met mast is available is of interest.  

First we have a look at the sensitivity of the proposed signal 𝑃𝑂𝑇𝑇  in terms of turbulence from neighbouring turbines and 

wind farms. In Fig. 11, the directional bin averaged 𝑃𝑂𝑇𝑇  from OR24 is able to identify the location of its neighbours. The 

magnitude allows to determine which turbine is next (OR25 at 4.2D) and which is further away (OR22 at 6.7D, OR23 at 

6.6D and OR21 at 9.1D).  10 

 
Figure 11: The new proposed signal 𝑷𝑶𝑻𝑻 is sensitive to wake-induced turbulence from neighbouring turbines and wind farms. 
With 𝑷𝑶𝑻𝑻 from turbine OR24 it is even possible to rank the distance of the neighbours being OR25 the closest with 4.2D and 
OR21 the farthest with 9.1D. 

The grey area represents the geometrical location of the neighbouring wind farms Walney 1 and 2. The closest distance to 15 

OR24 has Walney 1 with approximately 38.8D (SWT-3.6-107 Siemens). The two peaks at 208° and 255° are wind directions 

Walney1 wind farm 

in 38 D 
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for which multiple turbines of the neighbouring wind farm are aligned in a clear row of full wake situations. The increase 

from 345° to 15° can be explained with the coastline that gets quickly closer in clockwise direction. 

Secondly we have a look at the influence on the wake recovery. With south westerly wind direction, we focus on single 

wake, double wake and triple wake conditions behind turbine number OR27 for a sector of 10° around the full wake 

situation. And for north westerly wind directions we investigate the rows of turbines behind OR23. The main differences 5 

between these two directions are the average level of inflow turbulence intensity and the different spacing between the 

turbines. In Fig. 11, the inflow turbulence level from north west (sector of 302 ° to 322 °) is much lower (bin average 

𝑃𝑂𝑇𝑇������ ≈ 12.5 %) than from south west (sector of 192 ° to 222 °, bin average 𝑃𝑂𝑇𝑇������ ≈ 17.5 %) due to the wake effects from 

Walney 1 in more than 38D distance.  

It was not possible to use exactly the same thresholds for the classification which is on the one hand a result of the usage of 10 

different turbines and controller versions in alpha ventus, Nordsee Ost and Ormonde. On the other hand there seems to be a 

dependence on the ambient turbulence level. Table 4 and Table 5 provides the new thresholds for the different classifications 

in Ormonde, estimated as described in Section 3.3. 

 
Figure 12: Normalized power for each turbine along the row behind OR23 for a wind direction of 312 ° and a 10 ° sector width 15 
and 8 m/s ±1. Stability classes distinguished with the signal 𝑷𝑶𝑻𝑻  from OR23. 

For north westerly wind direction, Fig. 12 provides a view on different wake effects at different stability classes. The 

normalized power for each turbine in the row behind OR23 is displayed (wind from left to right). Wind speed is filtered for 

7 - 9 m/s and the wind direction is 312 ° with a sector width of 10 °. The largest wake effects are detected at OR22. This 

underlines the observation from the LiDAR measurements in NO. The first wake is the strongest and all consecutive wakes 20 
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are better mixed due to wake added turbulence. The difference in power production between stable and unstable cases is in 

the range of 10%, which also demonstrates the importance of this effect for wake model developers to take it into account.  

The south westerly wind direction is analyzed in Fig. 13, which is a similar illustration as Fig. 5 and Fig. 9. The 𝑃𝑂𝑇𝑇  signal 

is on a higher level due to the wind farm wake effects from Walney 1 and 2. It is still possible to identify different wake 

behaviour for the different classes but the effect is less pronounced than in the previous examples. A higher level of inflow 5 

turbulence intensity contributes to the mixing of the wake with free wind. Hence at lower inflow turbulence levels the effect 

of the wake added turbulence is larger.  

Further investigations are necessary to account for controller properties and to fill the normalized wind speed range [0.75 – 

1], beyond the rated wind speed of the turbine in free flow conditions.  

 10 

Table 4: Definition of stratification by power intensity: Ormonde for south westerly winds 

Classification Power Intensity (𝑃𝑂𝑇𝑇) 
Unstable 𝑃𝑂𝑇𝑇 > 18 % 
Neutral 18 % ≥ 𝑃𝑂𝑇𝑇 ≥ 13 % 
Stable 13 % > 𝑃𝑂𝑇𝑇 

 

Table 5: Definition of stratification by power intensity: Ormonde for north westerly winds 

Classification Power Intensity (𝑃𝑂𝑇𝑇) 
Unstable 𝑃𝑂𝑇𝑇 > 9 % 
Neutral 9 % ≥ 𝑃𝑂𝑇𝑇 ≥ 7 % 
Stable 7 % > 𝑃𝑂𝑇𝑇 

 

In performance monitoring of offshore wind farms the newly aggregated SCADA signals can be used as an auxiliary 15 

quantity to classify different atmospheric stability conditions. Advanced engineering wake models which are able to take 

turbulence intensity or stability parameters into account, may be parameterized by these artificial turbine signals in order to 

improve their prediction of wind turbine power production under waked conditions. 
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Figure 13: Wake effects in Ormonde (OR) under different atmospheric conditions. Power of downstream turbine normalised with 
free flow turbine. First row: single wake, second row: double wake and third row: triple wake. Left column: Normalised Power as 
function of wind direction, right column: Normalised power as function of wind speed. 

 5 
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5 Conclusions 

Measured data from three different offshore wind farms, two met masts and one long range LiDAR has been analysed to 

identify different influence on power production at turbines operating in the wake. We have validated the method described 

in Dörenkämper (2015), which proposes to use the turbulence intensity, to describe the power production in the wake. A 

correlation analysis was performed and for wind speeds in partial load operation, the standard deviation of the power divided 5 

by its average power (𝑃𝑂𝑇𝑇) was identified having similar behaviour than the turbulence intensity. A sensitivity check for 

𝑃𝑂𝑇𝑇 reviled very detailed responsiveness to increases in turbulences due to neighbouring turbines and wind farms. Effects 

from wind farm neighbours are detectable even more than 38 rotor diameter away. A classification of different turbine 

behaviour based on 𝑃𝑂𝑇𝑇  was analysed and compared to the classification with turbulence intensity TI.  

Both signals can distinguish between stronger and weaker wake effects. A transferability of the findings from one turbine to 10 

the next is only possible under the prerequisite of having the same turbine type and controller version. The magnitude of 

influence of the 𝑃𝑂𝑇𝑇  signals on wake effects is dependent on the level of inflow turbulence intensity. Higher inflow 

turbulence has already a higher wake mixing and therefore the wake added turbulence has a less pronounced contribution. 

Using 𝑃𝑂𝑇𝑇  to predict wakes more accurate is a promising approach, but further investigations are necessary to take 

controller properties into account and to fill the wind speed range beyond the rated wind speed.  15 
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